Effect of RuO₂ deposition on the activity of TiO₂: Photocatalytic oxidation of trichloroethylene in aqueous phase

P. B. AMAMA, K. ITOH, M. MURABAYASHI

Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan E-mail: placidus.amama@yale.edu

The deposition of transition metal/metal oxide on TiO₂ to modify the surface of TiO2, in order to improve its photocatalytic activity, is an area of great concern. Such surface modification has most often resulted in increased photocatalytic activity of TiO₂, especially in aqueous phase reactions [1–4]. This has been rationalized to be due to the ability of these transition metal deposits to inhibit the electron-hole recombination process of semiconductors during photocatalysis [1-4]. It is well documented that this recombination process is an impediment to enhanced reaction rates and also a major energy-wasting step [1, 2, 4]. The metallization of TiO₂ using transition metal deposits remains as one of the most promising approaches that can be employed to reduce the electron-hole recombination process. Pd and most especially Pt are the best candidates as metal deposits because they have shown striking improvement of the photocatalytic activity of TiO_2 [1, 4]. The use of precious metals (Pt or Pd) for TiO₂ metallization may prove uneconomical because of the difficulty associated with the recyclability of powdered catalysts used in wastewater treatment. Therefore, there is a need to explore other effective ways of metallizing TiO₂ with other non-precious metals such as RuO₂.

RuO₂ is an efficient hole and electron transfer catalyst on TiO_2 and seems to improve the efficiency of charge separation at the metal oxide/semiconductor interface, when deposited in small amounts, because an excess amount is capable of acting as a recombination center [1]. An important beneficial effect of RuO₂ loading on TiO₂ is the increase in conductivity, which ultimately allows more efficient charge transfer within the photocatalyst and makes it kinetically faster when it is involved in redox processes [5]. Most studies carried out so far on photocatalytic oxidation reactions with TiO₂/RuO₂ involve either H₂O cleavage reactions or reactions in which hydrogen is evolved. To the best of our knowledge the use of TiO₂/RuO₂ as catalyst in aqueous phase photocatalytic oxidation reactions involving chloro-hydrocarbons has not been reported. In this work, materials belonging to TiO₂-RuO₂ system have been prepared by impregnation and slurry precipitation using Degussa P-25 TiO₂ (P-25) and TiO₂ glass fiber cloth (TiO₂-GFC) as supports. An evaluation of their photocatalytic activities during trichloroethylene (TCE) oxidation in aqueous phase has been carried out. A correlation between their photocatalytic activities and the method employed for RuO₂ deposition has been established. The activity of TiO2-GFC/RuO2

has also been compared with those of TiO_2 -GFC/Pt and TiO_2 -GFC/Pt/RuO₂.

P-25 (non porous, mainly anatase, 50 m²g⁻¹) was provided by Nippon Aerosil, Japan, while TiO₂-GFC (dimension = 5.5 cm × 10 cm; amount of TiO₂ loaded = 4.8 mg/cm²) was supplied by Nippon Muki Co. Ltd., Japan. TiO₂-GFC has been characterized in detail by Murabayashi *et al.* [6]. P-25/RuO₂ was prepared by impregnation [7] and slurry precipitation [2] using RuCl₃·3H₂O (Aldrich) as RuO₂ precursor. The sequential deposition of Pt and RuO₂ on TiO₂-GFC in the bifunctional photocatalyst was performed by photoplatinization [8] using H₂PtCl₆·6H₂O (Wako Chemicals) as the Pt precursor and impregnation (mentioned above, [7]) respectively.

Photocatalytic oxidation reaction of TCE (reagent grade; purchased from Junsei Chemical Co., Ltd., Japan) was executed in a batch reactor, consisting of a 'test-tube' Pyrex vessel of 400 ml with a three-necked teflon-lid with gas-in, gas-out and sample port at 298 K. The gas-in and gas-out openings were closed throughout the reaction. 300 ml aqueous solution containing 5 mg/l of TCE was prepared by stirring the neat compound with deionized water for more than 6 h. The experiment was performed under continuous magnetic agitation by placing the glass fiber cloth sample vertically in the solution or mixing 0.05 g of the powdered sample with the solution. The batch reactor was completely sealed to minimize the escape of TCE due to volatilization. Illumination in the near UV (300-440 nm) was carried out by eight black light lamps (8×20 W, Toshiba FL20S.BLB, intensity = 3.2 mW/cm^2) positioned at a distance of 7 cm from the batch reactor. Before and during illumination, 2 ml of the sample was withdrawn from the batch reactor at regular intervals and TCE present was extracted with 3 ml of *n*-hexane and analyzed with a Hitachi G5000 gas chromatograph equipped with an electron capture detector.

The deposition of RuO_2 on P-25 by impregnation slightly improved the photocatalytic activity of P-25 as presented in Fig. 1. The photocatalytic activity is expressed in terms of the rate of TCE oxidation. This slight improvement in activity was observed between 0.1 and 0.3 wt%. The initial increase in activity after the deposition of 0.1 wt% of RuO_2 was higher than subsequent increases in activity on addition of more RuO_2 . This result also reveals that the deposition of RuO_2 by slurry precipitation deactivated P-25. P-25 (0 wt% RuO_2) subjected to the process of slurry precipitation

Figure 1 Comparison of the photocatalytic activities of P-25/RuO₂ prepared by slurry precipitation and impregnation methods. TCE = 5 mg/L, UV light = 3.2 mW/cm², P-25 = 0.05 g.

Figure 2 Average reaction rate of TCE photocatalytic degradation in aqueous-phase as a function of the amount of RuO_2 deposited on TiO₂-GFC. TCE = 5 mg/L, UV light = 3.2 mW/cm², P-25 = 0.05 g.

without RuCl₃·3H₂O showed activity lower than native P-25. However, the activity of P-25 (0 wt%) subjected to the process of impregnation without RuCl₃·3H₂O was similar to native P-25. Crittenden *et al.* [9] have shown that the high photocatalytic activity of P-25 is not enhanced by platinization. The slight improvement in activity of P-25/RuO₂ observed between 0 and 0.3 wt% is therefore significant.

Due to the deactivating effect of the process of slurry precipitation observed with P-25/RuO₂ samples (Fig. 1), RuO₂ was deposited on TiO₂-GFC using the impregnation method. An increase in photocatalytic activity was observed between 0 and 0.4 wt% of RuO₂ on TiO₂-GFC as presented in Fig. 2. The increase in photocatalytic activity observed for TiO2-GFC was over ten times higher than that of P-25/RuO₂. The decrease in activity of TiO2-GFC beyond 0.4 wt% suggests that the optimum amount of RuO₂ deposition on TiO₂-GFC is ~ 0.4 wt%. According to Sakata *et al.* [1] when RuO₂ particles are deposited very densely on the surface of TiO₂ (in our case > \sim 0.4 wt%), the RuO₂ particles can function as recombination centers because the distance between particles becomes shorter than the distance in which the image force to both electrons and holes is effective. Also, the presence of excess RuO₂ deposits on

Figure 3 Photocatalytic degradation of TCE in aqueous phase using TiO₂-GFC, TiO₂-GFC/RuO₂, TiO₂-GFC/Pt and TiO₂-GFC/Pt/RuO₂. TCE = 5 mg/L, UV light = 3.2 mW/cm^2 , P-25 = 0.05 g.

 TiO_2 -GFC may shield the surface of TiO_2 -GFC from UV light illumination and this prevents the activation of TiO_2 .

Comparisons of the photocatalytic activities of TiO₂-GFC, TiO₂-GFC/RuO₂, TiO₂-GFC/Pt and a bifunctional photocatalyst (TiO₂-GFC/Pt/RuO₂) have been carried out as presented in Fig. 3. The photocatalytic activity is based on the consumption of TCE expressed in normalized concentrations with time. The photocatalytic activities of TiO₂/Pt and TiO₂/RuO₂ with 0.4 wt% of Pt and RuO₂ deposits within 60 min of the reaction were almost indistinguishable. The calculated half-life values were approximately the same. Platinized TiO₂-GFC, however, showed a slightly higher activity than TiO₂-GFC/RuO₂ after 90 min. The activity shown by TiO₂-GFC/RuO₂ was greater than that of TiO₂-GFC.

The sequential deposition of both RuO_2 and Pt on TiO₂-GFC in the bifunctional photocatalyst was performed with the aim of substituting half the amount of Pt in platinized TiO₂ while maintaining its high photocatalytic activity. The substitution of 0.2 wt% of Pt in TiO₂-GFC/Pt with RuO₂ did not result in a significant decrease in photocatalytic activity as evidenced by the complete consumption of TCE after 90 min using either TiO₂-GFC/Pt or TiO₂-GFC/Pt/RuO₂ as presented in Fig. 3.

This work shows that a non-precious metal oxide catalyst (RuO_2) can be used effectively to accomplish enhanced photocatalytic activity of TiO_2 in aqueous phase. From the above results, it is concluded that the photocatalytic activity of TiO_2/RuO_2 is dependent on the method employed for preparation. Slight improvement in the activity of P-25 has been accomplished through the deposition of RuO_2 on P-25 by impregnation. This method is therefore recommended for the preparation of efficient TiO_2/RuO_2 .

Acknowledgment

The authors gratefully acknowledge Nippon Muki Co. Ltd., Japan for the generous supply of titanium dioxide coated on glass fiber cloth (TiO₂-GFC).

References

- 1. T. SAKATA, K. HASHIMOTO and T. KAWAI, *J. Phys. Chem.* 88 (1984) 5214.
- 2. E. BORGARELLO, J. KIWI, E. PELIZZETTI, M. VISCA and M. GRÄTZEL, J. Amer. Chem. Soc. 103 (1981) 6324.
- 3. M. MURABAYASHI, K. ITOH and K. TOGASHI, Denki Kagaku 6 (1998) 671.
- 4. J. CHIN, D. OLLIS, W. RULKENS and H. BRUNING, *Wat. Res.* **33** (1999) 661.
- 5. G. BLONDEEL, A. HARRIMAN, G. PORTER, D. URWIN and J. KIWI, J. Phys. Chem. 87 (1983) 2629.
- 6. M. MURABAYASHI, K. ITOH, K. KAWASHIMA, R. MASUDA and S. SUZUKI, in "Photocatalytic Purification and

Treatment of Water and Air," edited by D. F. Ollis and H. Al-Ekabi (Elsevier, London, 1993).

- 7. J. C. ESCUDERO, S. CERVERA-MARCH, J. GIMÉNEZ and R. SIMARRO, J. Catal. 123 (1989) 320.
- 8. B. KRAEUTLER and A. BARD, J. Amer. Chem. Soc. 100 (1978) 4317.
- 9. J. CRITTENDEN, J. LIU, D. HAND and PERRAM, *Wat. Res.* **31** (1997) 429.

Received 16 October and accepted 23 December 2003